CT Algorithm for Optimal TAVR With Sapien 3

Do-Yoon Kang, MD. University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

Conflict of Interest Statement

I have nothing to disclose.

Risk Stratification for SAVR vs. TAVR

Surgical Clinical Risk

STS score Age, Gender **Diabetes**, Hypertension Heart failure Renal dysfunction Lung disease Cerebrovascular disease **Previous Surgery** Malignancy Fraility

TAVR Anatomic Risk

Bicuspid AV Aortic valve size Heavy Calcification Low coronary height Landing zone anatomy Coronary artery disease Mitral/Tricuspid disease Porcelain aorta Bicuspid aortopathy Vascular access

Risk Stratification for SAVR vs. TAVR

Surgical Clinical Risk

In 2019, TAVR showed better outcomes Even in patients with Low surgical risk !

TH NEW ENGLAND JOURNAL IF MEDICINE

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

Jeffrey J. Popma, M.D., G. Michael Deeb, M.D., Steven J. Yakubov, M.D.,

Mubashir Mumtaz John C. Heiser, M.I Paul Sora David H. Ada John K. Forrest, M Nicolo Piazza, George Petr Michael J. Bouh and Michael I. The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo,
 S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn,
 P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman,
 W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb,
 and C.R. Smith, for the PARTNER 3 Investigators*

TAVR Anatomic Risk

Bicuspid AV Aortic valve size Heavy Calcification Low coronary height Landing zone anatomy Coronary artery disease Mitral/Tricuspid disease Porcelain aorta Bicuspid aortopathy Vascular access

Risk Stratification for SAVR vs. TAVR

Surgical Clinical Risk

In 2019, TAVR showed better outcomes Even in patients with Low surgical risk !

TAVR Anatomic Risk

Bicuspid AV Aortic valve size Heavy Calcification

Anatomic risk evaluation became more Important for treatment decision-making.

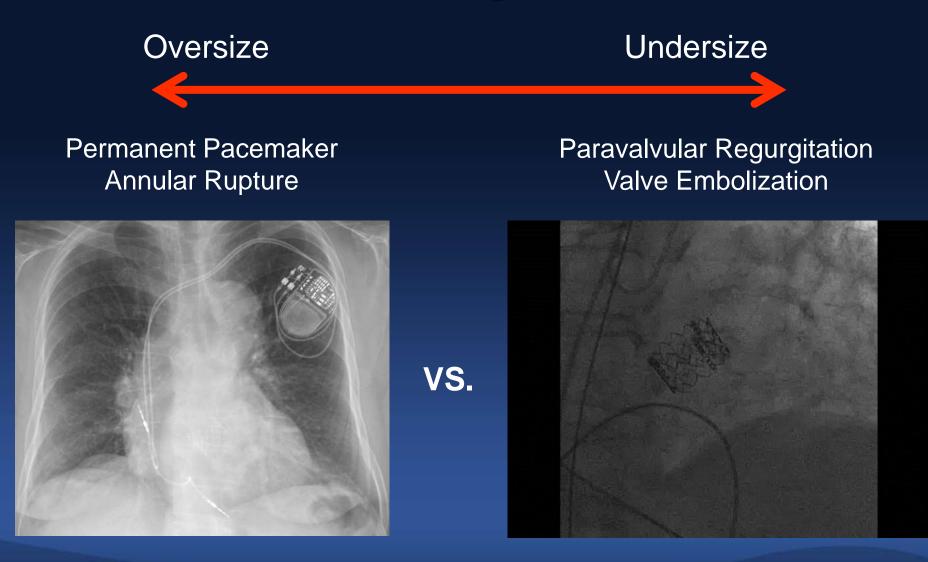
David H. Ada John K. Forrest, M Nicolo Piazza George Petr Michael J. Bouh and Michael J

ORIGINAL ARTICLE

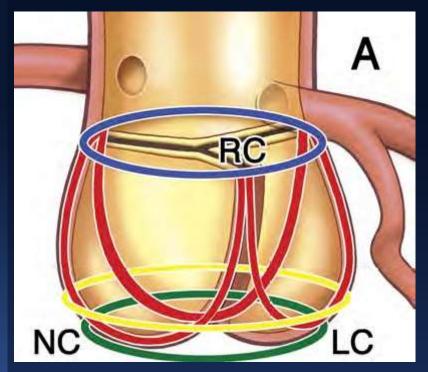
Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

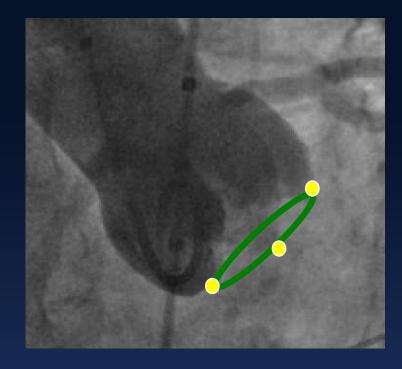
M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo, S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn, P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman, W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb, and C.R. Smith, for the PARTNER 3 Investigators* Porcelain aorta Bicuspid aortopathy Vascular access

MDCT Analysis is Essential for TAVR Anatomic Risk Evaluation


- 1. Suitable Aortic Root Anatomy
- 2. Device and Size Selection
- 3. Coronary Disease Status
- 4. Aortic, Iliac and Femoral Anatomy
- 5. Optimal Fluoroscopic Projection Angulation

Valve Sizing Matters





Virtual Basal Ring Correct Assessment of Annulus Size

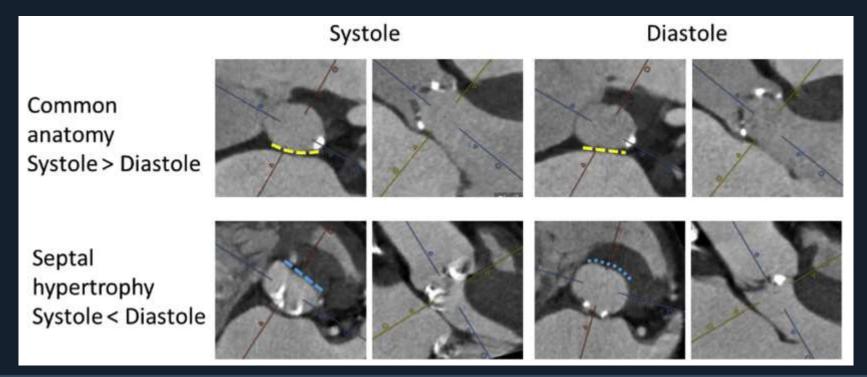
Sinotubular junction Aortic leaflets Aortoventricular junction

Aortic Annulus

: virtual ring formed by base of AV leaflets

1581 COLLEGE MEDICINE

Medical Center


RC = Right coronary cusp; NC = Non-coronary cusp; LC = Left coronary cusp

CardioVascular Research Foundation

Leipsic et al JACC Imaging 2011

Annular dynamism

- Annular size changes throughout cardiac cycle
 → Measurement at end-systolic phase
- Check the diastolic phase in case of septal hypertrophy

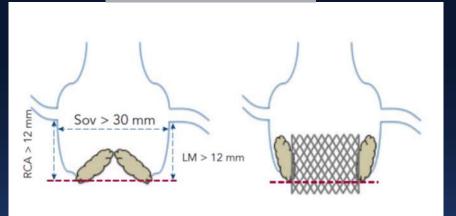
Blanke P et al. JACC Cardiovasc Imaging. 2019;12:1-24.

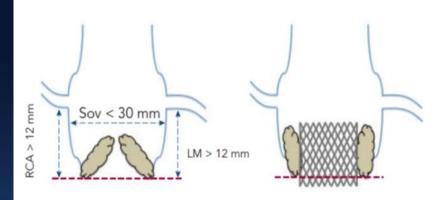
Balloon-Expandable SAPIEN 3 Valve

Area Oversizing % = $\frac{nominal Sapien 3 area}{Systolic annular area} \times 100$

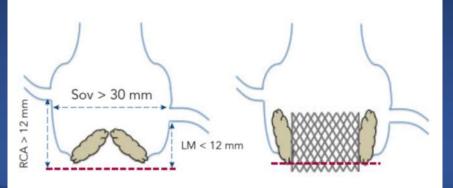
Adjusting S3 Sizing By Balloon Volume (Over or Under filled)

22 mm 23 mm 24 mm	- 1cc + 1cc
25 mm <mark>26 mm</mark> 27mm	- 2cc + 2cc
28mm <mark>29 mm</mark> 30 mm	- 3cc + 3cc

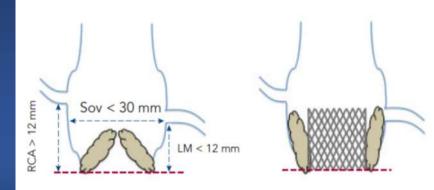




Risk of Coronary Obstruction


Wide and High

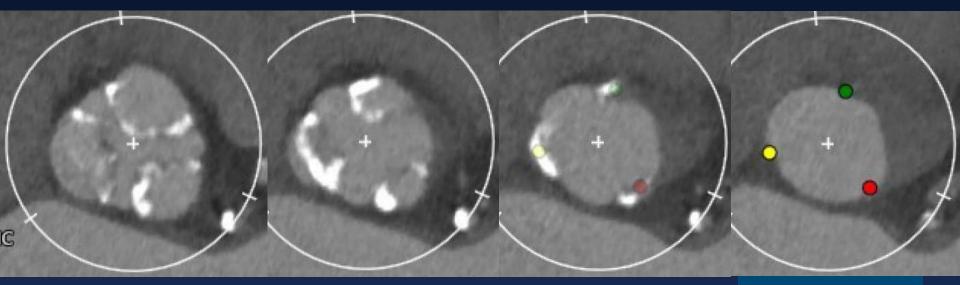
Shallow and High



Wide and Low

Shallow and Low (<10mm)

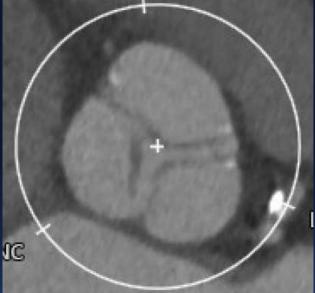
Interventional Cardiology Review, 2015;10(2):94–7


S3 Area Oversizing Based on the CT 15%, Cutoff

Mild Calcification (Ca volume < 400 mm³) Moderate Calcification (Ca volume 400-1000 mm³) Severe Calcification (Ca volume > 1000 mm³) Bicuspid AS and Heavy Calcification

10~15%, then Overfill
5~10%, then Overfill
0~5%, then Overfill
0%, then Overfill

Case #1, 85/M with Severe AS

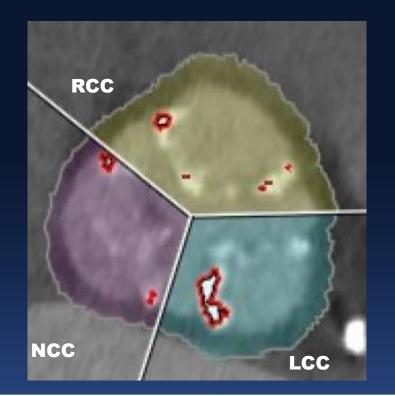


Annulus plane

Aortic Annulus parameters	
Annulus short diameter	21.8 mm
Annulus long diameter	25.6 mm
Annululs mean diameter	23.7 mm
Annulus area	435 mm ²
Annulus area-driven diameter	23.5 mm
Annulus perimeter	74.5 mm
Annulus perimeter-driven diameter	23.7 mm

Cardio Vascular Resea

CT findings – Aortic Valve Complex


Sinus of Valsalva

Sinus of Valsalva		STJ	
Area	830 mm ²	Area	630 mm ²
Sinus / Annulus Area Ratio	1.91	STJ/ Annulus Area Ratio	1.45
NCC diameter	30.6 mm	Mean diameter	28.2 mm
LCC diameter	33.5 mm		
RCC diameter	31.0 mm		

Mean Sinus / Annulus Area Ratio 1.83 \pm 0.27 Mean STJ / Annulus Area Ratio 1.49 \pm 0.29

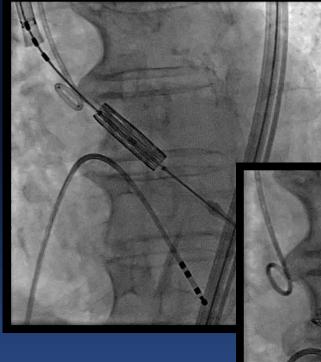
Calcium Amount

Calcium volume	
NCC	84 mm ³
RCC	62 mm ³
LCC	48 mm ³
Total	194 mm ³

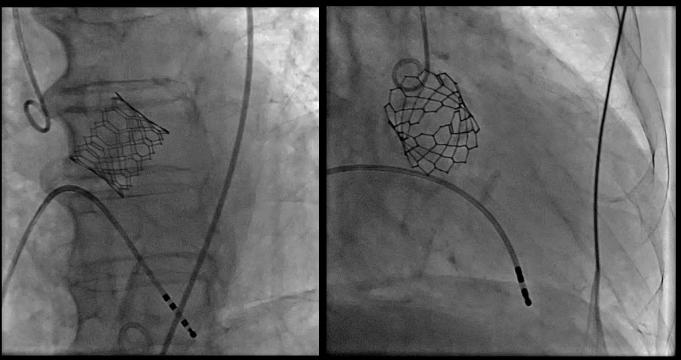
S3 Area Oversizing Based on the CT 15%, Cutoff

Mild Calcification (Ca volume < 400 mm³) Moderate Calcification (Ca volume 400-1000 mm³) Severe Calcification (Ca volume > 1000 mm³) Bicuspid AS and Heavy Calcification

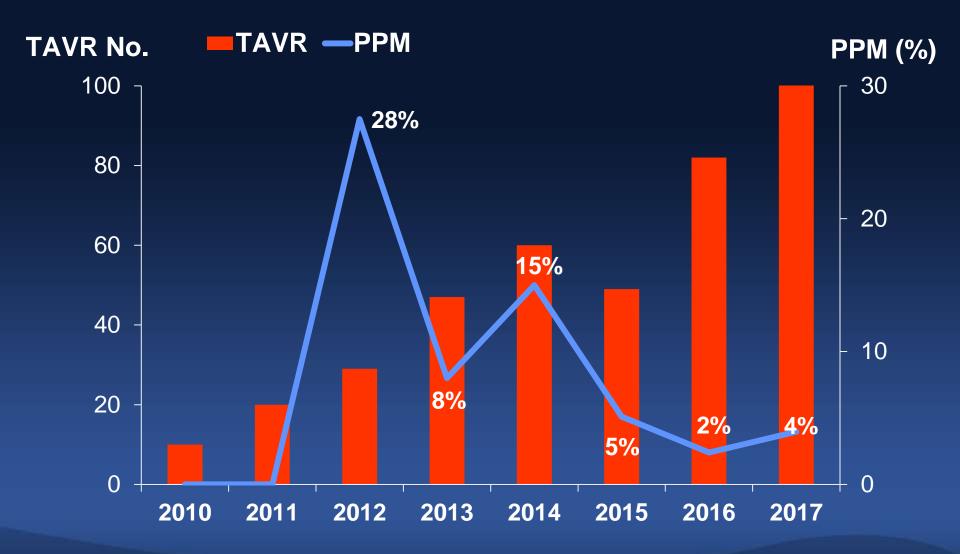
10~15%, then Overfill
5~10%, then Overfill
0~5%, then Overfill
0%, then Overfill



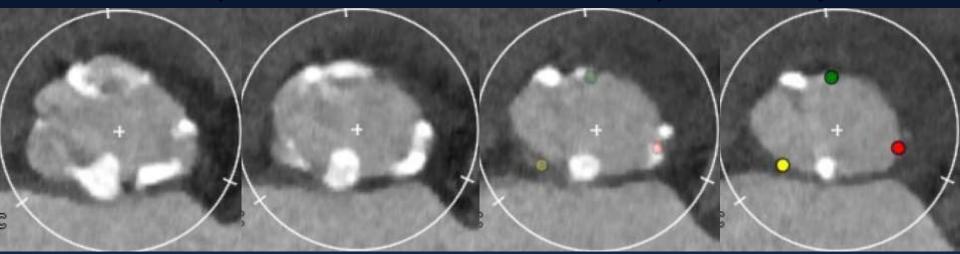
I choose S3 26mm and 1cc Underfill


Size	Area_oversize (%)	Perimeter_oversize (%)
23	94.0	95.9
24	102.4	100.1
25	111.1	104.2
26	119.3	108.4
27	128.7	112.6
28	138.4	116.7
29	149.2	121.2

S3 26mm and 1cc Underfill



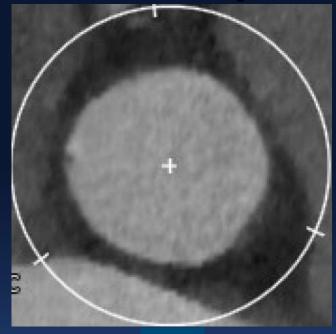
Trivial PVL



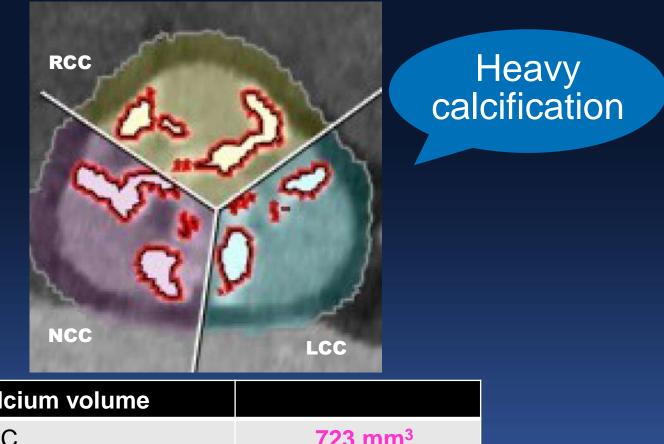
PPM After TAVR in AMC

Case #2, 90/M with Severe AS, PCI Hx, AF

Annulus plane


Aortic Annulus parameters	
Annulus short diameter	20.8 mm
Annulus long diameter	30.8 mm
Annululs mean diameter	25.8 mm
Annulus area	507 mm ²
Annulus area-driven diameter	25.4 mm
Annulus perimeter	82.8 mm
Annulus perimeter-driven diameter	26.3 mm

CT findings – Aortic Valve Complex

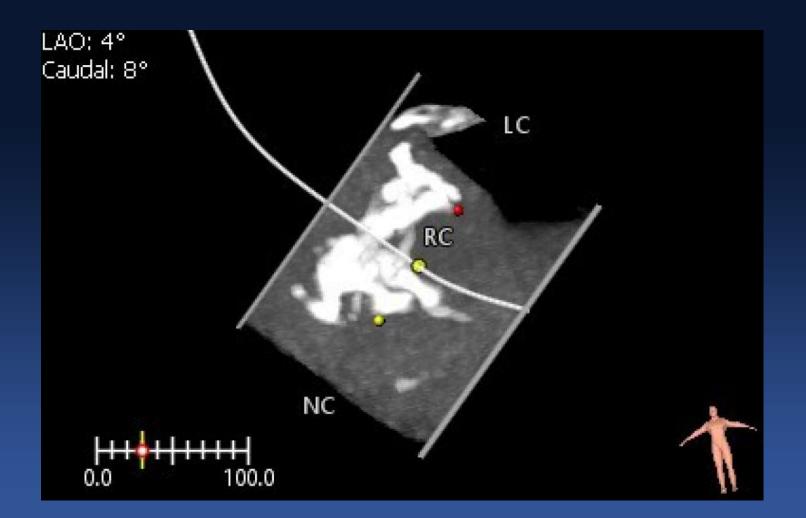

Sinus of Valsalva

STJ

Sinus of Valsalva		STJ	
Area	927 mm ²	Area	750 mm ²
Sinus / Annulus Area Ratio	1.83	STJ/ Annulus Area Ratio	1.48
NCC diameter	35.1 mm	Mean diameter	31.0 mm
LCC diameter	36.7 mm	Height of STJ	24.7 mm
RCC diameter	31.8 mm		
Mean Sinus / Annulus Area Ratio	183 ± 0.27	Mean STJ / Annulus Area Ratio	1 49 + 0 29

Calcium Amount

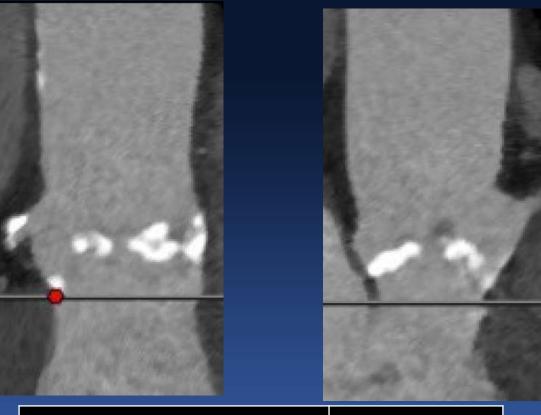
Calcium volume	
NCC	723 mm ³
RCC	438 mm ³
LCC	472 mm ³
Total	1633 mm ³


Mean Amount of total Calcium

CardioVascular Research Foundation

Calcium 355.4 ± 289.9

Calcification of AV complex

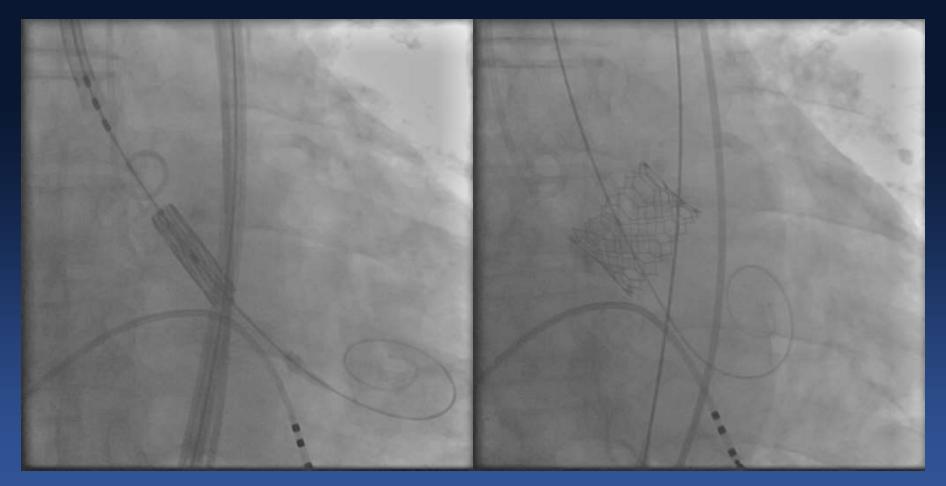


CT findings – Coronary Height

RCA

LCA

Coronary Height	
LCA	13.5 mm
RCA	17.7 mm


Begin with Smaller Degree of Oversizing S3 26mm (2.3% Oversizing)

Size	Area_oversize (%)	Perimeter_oversize (%)
24	87.9	90.1
25	95.3	93.8
26	102.3	97.5
27	110.3	101.3
28	118.6	105.0
29	128.0	109.0
30	137.0	112.8

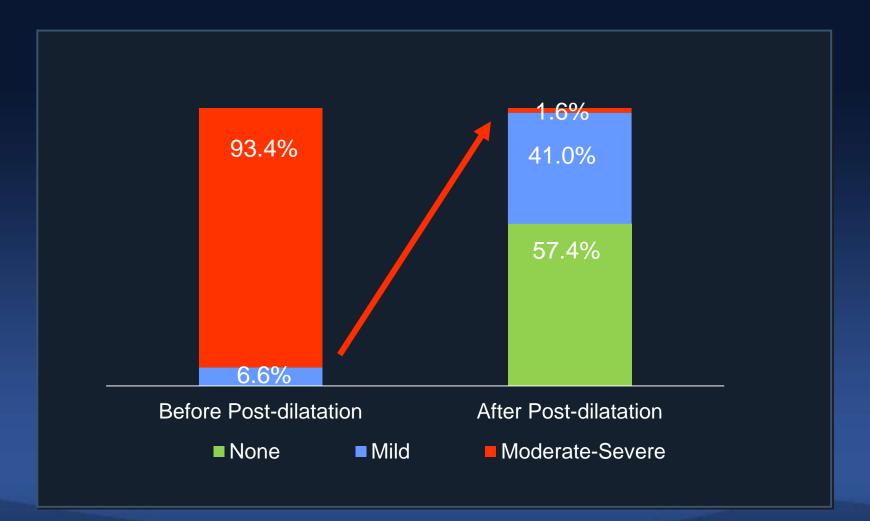
S3 26mm (2.3% Oversizing)

Moderate PVL

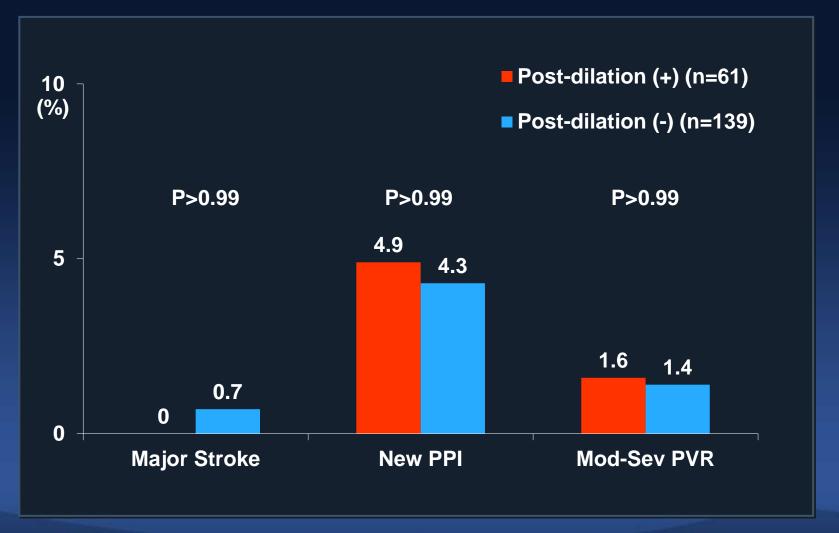
Post-dilation with +2cc Overfill (Upto 27mm, 10% Oversizing)

Size	Area_oversize (%)	Perimeter_oversize (%)
24	87.9	90.1
25	95.3	93.8
26	102.3	97.5
27	110.3	101.3
28	118.6	105.0
29	128.0	109.0
30	137.0	112.8

Post-dilation with +2cc Overfill (10% Oversizing)

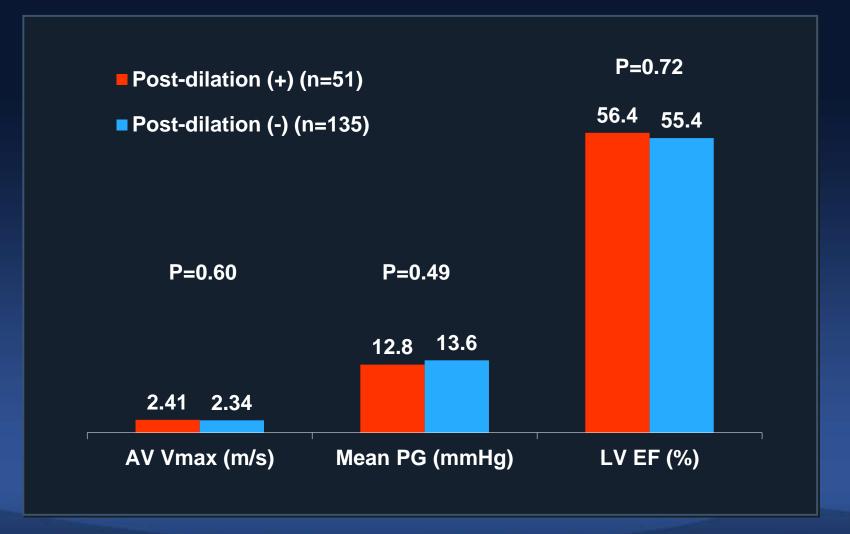

Mild PVL

The impact of Post-Dilatation (n=61)



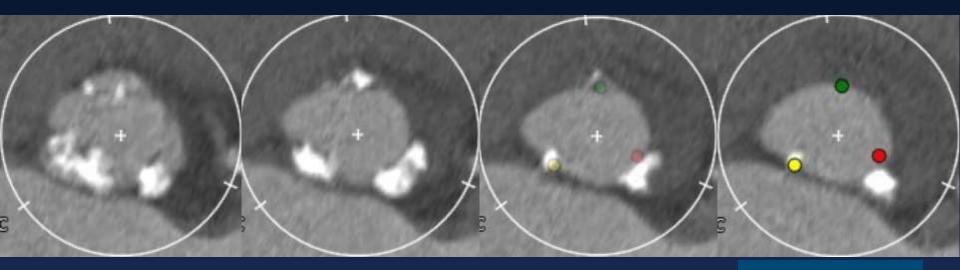
ASAN-TAVR Registry

Post-dilation was safe and effective Clinical Outcomes at 1 month after TAVR



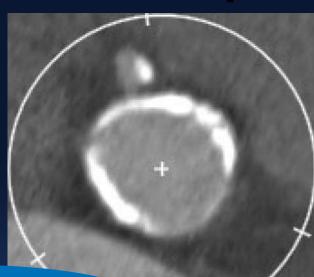
ASAN-TAVR Registry

Post-dilation was safe and effective EchoCG at 1 month after TAVR



ASAN-TAVR Registry

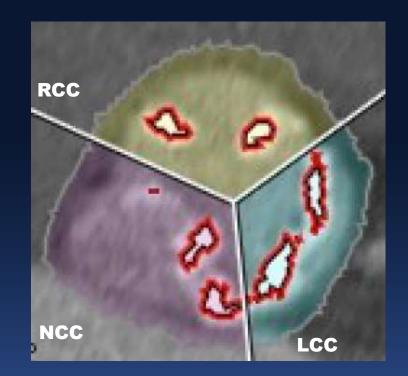
Case #3, 86/F with Severe AS, LV dysfunction



Annulus plane

Aortic Annulus parameters	
Annulus short diameter	20.0 mm
Annulus long diameter	27.1 mm
Annululs mean diameter	23.6 mm
Annulus area	427 mm ²
Annulus area-driven diameter	23.3 mm
Annulus perimeter	75.3 mm
Annulus perimeter-driven diameter	24.0 mm

CT findings – Aortic Valve Complex

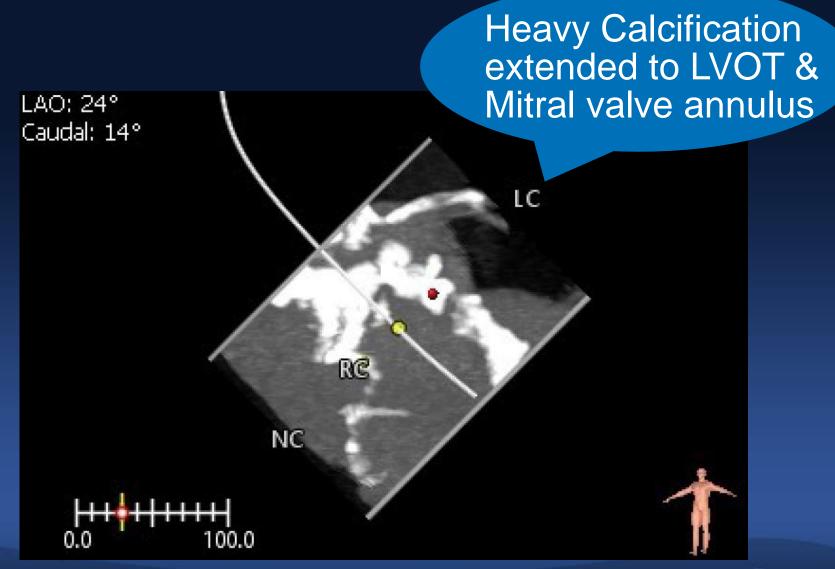

Small SoV & STJ

Sinus of Valsalva

STJ

Sinus of Valsalva		STJ	
Area	691 mm ²	Area	399 mm ²
Sinus / Annulus Area Ratio	1.62	STJ/ Annulus Area Ratio	0.93
NCC diameter	31.2 mm	Mean diameter	22.7 mm
LCC diameter	28.7 mm	Height of STJ	20.8 mm
RCC diameter	27.8 mm		
Mean Sinus / Annulus Area Ratio	183 ± 0.27	Mean STJ / Annulus Area Ratio	1.49 ± 0.29

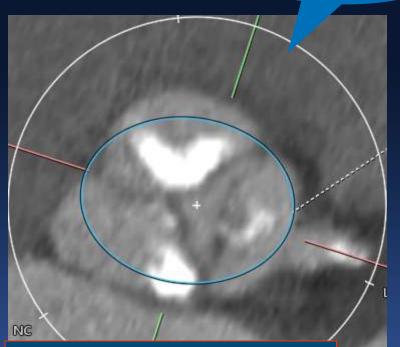
Calcium Amount


Calcium volume	
NCC	420 mm ³
RCC	234 mm ³
LCC	322 mm ³
Total	976 mm ³

Mean Amount of total Calcium

Calcium 355.4 \pm 289.9

CT findings – **AV** complex Calcification


CardioVascular Research Foundatio

High Risk of Coronary Obstruction

LCA

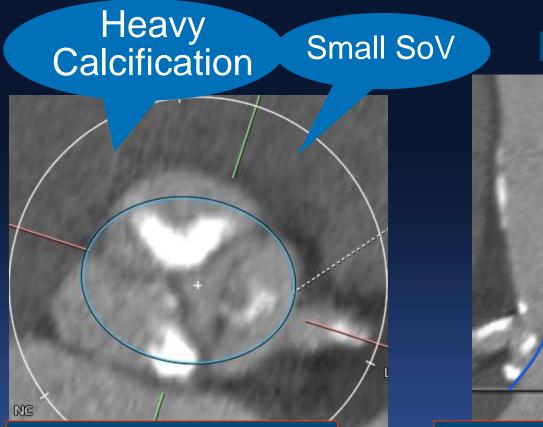
Small SoV

Virtual Valve: 110% area oversizing Valve to LMT: 1.0 mm

Cardio Vascular Research Foundation

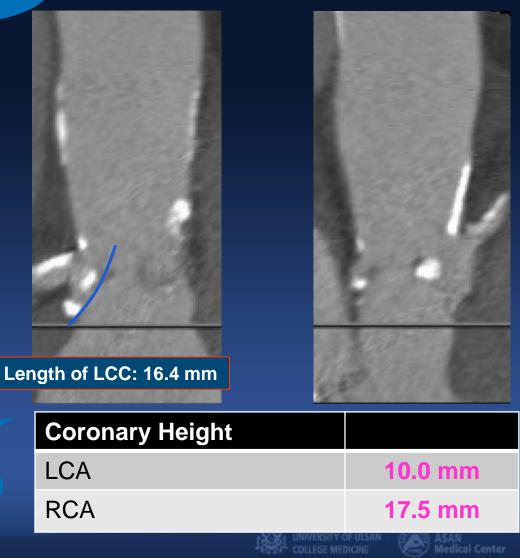
Low coronary height with long LCC leaflet

10.0 mm


17.5 mm

RCA

High Anatomic Risk for TAVR !!!


LCA

LCA

Virtual Valve: 110% area oversizing Valve to LMT: 1.0 mm

Low coronary height with long LCC leaflet

RCA

86/F, Severe AS, LV dysfunction (EF 38%), Parkinsonism STS score 4.5%

CT Anatomy can Guide to Select Optimal Candidate for TAVR vs. SAVR

→ Successful Rapid-Deployment AVR was done.


Case #4, M/79 with Bicuspid AS

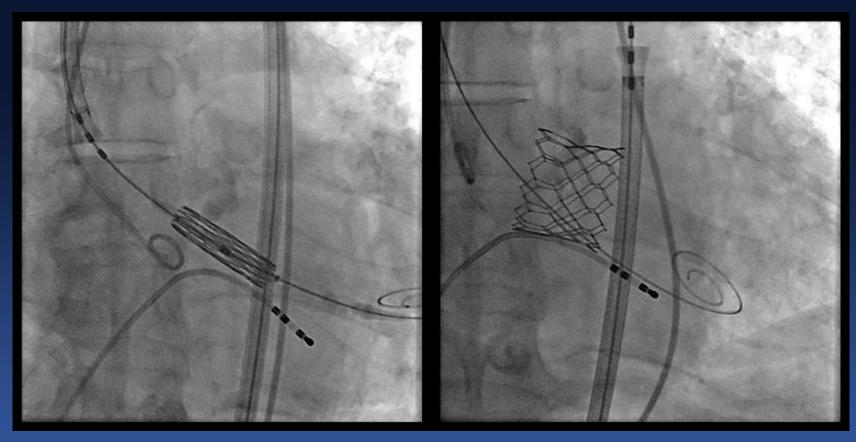
Annulus plane

Aortic Annulus parameters	
Annulus short diameter	26.0 mm
Annulus long diameter	28.6 mm
Annululs mean diameter	27.3 mm
Annulus area	589 mm ²
Annulus area-driven diameter	27.4 mm
Annulus perimeter	86.5 mm
Annulus perimeter-driven diameter	27.5 mm

Calcium Amount

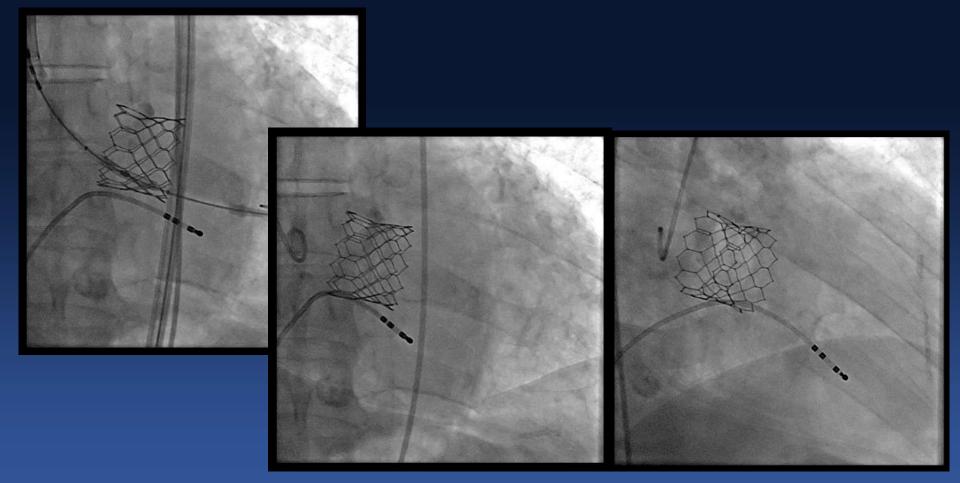
Calcium volume	
RCC	616 mm ³
LCC	48 mm ³
Total	664 mm ³

S3 29mm with -3cc Underfill (2% Oversizing)


Size	Area_oversize (%)	Perimeter_oversize (%)
24	75.6	86.2
25	82.0	89.8
26	88.1	93.3
27	95.0	96.9
28	102.2	100.5
29	110.2	104.4
30	117.9	108.0

S3 29mm with -3cc Underfill (2% Oversizing)

Moderate PVL



Post-dilation with +3cc (nominal volume) (10% Oversizing)

Size	Area_oversize (%)	Perimeter_oversize (%)
24	75.6	86.2
25	82.0	89.8
26	88.1	93.3
27	95.0	96.9
28	102.2	100.5
29	110.2	104.4
30	117.9	108.0

Post-dilation with +3cc (nominal volume) (10% Oversizing)

Mild PVL

Outcomes after TAVR in AMC

 $\left(\right)$

 \mathbf{O}

2.

6.

()

Outcomes of PARTNER III for Low-Risk AS patients (@ 30 days)

- All-cause mortality
- Major (disabling) strokes
- Major vascular complications
- New permanent pacemakers
- Mod-severe PVR

AMC Total (n=533)	S3 Tricuspid (n=211)	S3 <i>Low Risk</i> (n=141)
2.6%	1.9%	0.2%
1.5%	0.5%	0%
4.5%	1.9%	0.3%
8.4%	5.7%	4.9%
8.6%	1.4%	1.4%
	<i>Total</i> (n=533) 2.6% 1.5% 4.5% 8.4%	TotalTricuspid(n=533)(n=211)2.6%1.9%1.5%0.5%4.5%1.9%8.4%5.7%

4.3% 3.7% 2.6%

COLLEGE MEDICINE

STS

Conclusion

- Anatomic risk evaluation is important, especially in the era of TAVR for patients with lower surgical risk.
- Optimal patient and valve selection by comprehensive MDCT analysis is essential to optimize the procedural outcomes.
- CT sizing algorithm with provisional post-dilation upto intended target oversizing ratio is safe and effective.

